Comparative Analysis of Random Forests with Statistical and Machine Learning Methods in Predicting Fault-Prone Classes
نویسندگان
چکیده
There are available metrics for predicting fault prone classes, which may help software organizations for planning and performing testing activities. This may be possible due to proper allocation of resources on fault prone parts of the design and code of the software. Hence, importance and usefulness of such metrics is understandable, but empirical validation of these metrics is always a great challenge. Random Forest (RF) algorithm has been successfully applied for solving regression and classification problems in many applications. In this work, the authors predict faulty classes/modules using object oriented metrics and static code metrics. This chapter evaluates the capability of RF algorithm and compares its performance with nine statistical and machine learning methods in predicting fault prone software classes. The authors applied RF on six case studies based on open source, commercial software and NASA data sets. The results indicate that the prediction performance of RF is generally better than statistical and machine learning models. Further, the classification of faulty classes/modules using the RF method is better than the other methods in most of the data sets. DOI: 10.4018/978-1-61350-429-1.ch023
منابع مشابه
Prediction of Change-Prone Classes Using Machine Learning and Statistical Techniques
For software development, availability of resources is limited, thereby necessitating efficient and effective utilization of resources. This can be achieved through prediction of key attributes, which affect software quality such as fault proneness, change proneness, effort, maintainability, etc. The primary aim of this chapter is to investigate the relationship between object-oriented metrics ...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملComparative Analysis of Machine Learning Algorithms with Optimization Purposes
The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches. Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data. In this paper, a methodology has been employed to opt...
متن کاملA Statistical Framework for the Prediction of Fault-Proneness
Accurate prediction of fault prone modules in software development process enables effective discovery and identification of the defects. Such prediction models are especially valuable for the large-scale systems, where verification experts need to focus their attention and resources to problem areas in the system under development. This paper presents a methodology for predicting fault prone m...
متن کاملComparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images
Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016